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Abstract

In this paper a three stage procedure is presented for deriving parameters bounds of SISO Wiener models when the nonlinear block is modeled
by a possibly noninvertible polynomial and the output measurement errors are bounded. First, using steady-state input–output data, parameters
of the nonlinear part are bounded by a tight orthotope. Then, given the estimated uncertain nonlinearity and the output measurements collected
exciting the system with an input dynamic signal, bounds on the unmeasurable inner signal are computed. Finally, such bounds, together with
noisy output measurements, are used for bounding the parameters of the linear block.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Most physical systems are inherently nonlinear and, though
in some cases they can be represented by linear models over
a restricted operating range, only nonlinear representations are
adequate for their description.

The nonlinear system considered in this paper, commonly
referred to as Wiener model, is shown in Fig. 1; it consists
of a linear dynamic system followed by static nonlinear block
N. The identification of such a model is carried out on the
basis of the sequences ut and yt , while the inner signal xt is
not assumed to be available. In spite of its simplicity, such a
model has been successfully used in many engineering fields,
since it can embed process structure knowledge like, e.g., the
presence of nonlinearity in the measurement equipment. Rele-
vant applications of Wiener models can be found in a number
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of fields: adaptive signal processing (Wigren, 1998), echo
cancellation (Treichler, Johnsson, & Larimore, 1987), blind
adaptation (Godard, 1980; Wigren, 1997), harmonic signal
modeling (Wigren & Handel, 1996), identification of biological
systems (Hunter & Korenberg, 1986; Korenberg & Hunter,
1986), modeling of visual systems (den Brinker, 1989), mod-
eling of distillation columns (Pearson & Pottmann, 2000; Zhu,
1999). The identification of Wiener models has attracted the
attention of many authors (see, e.g., the survey paper Billings,
1980) exploiting a number of different techniques. Subspace
identification is proposed in the contributions (Westwick & Ver-
haegen, 1996) and (Lovera, Gustafsson, & Verhaegen, 2000);
maximum likelihood and recursive prediction error identifica-
tion are, respectively, considered in (Hagenblad & Ljung, 1998)
and (Wigren, 1993); frequency domain techniques are exploited
in (Bai, 2003) and (Crama & Schoukens, 2001); a method based
on nonparametric kernel regression estimation is proposed in
(Greblicki, 1992) and a blind approach is taken in (Bai, 2002).
The main difficulty in the identification of Wiener systems is
that the internal signal is not available for measurement. How-
ever, under the assumption of invertible nonlinearities, which
is a common one, the inner signal can be recovered from the
output measurements through inversion of the previously esti-
mated nonlinearity. Unfortunately, many output nonlinearities
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Fig. 1. Single-input single-output Wiener model.

encountered in real world problems are noninvertible (see, e.g.,
Wigren, 1998), thus the invertibility assumption appears to be
quite restrictive. Removal of such an hypothesis makes the con-
sistent evaluation of the inner signal sequence a difficult task
even in the case of exactly known nonlinearities.

In all the papers mentioned above, the authors assume that
the measurement error �t is statistically described. A worth-
while alternative to the stochastic description of measurement
errors are the bounded-errors characterization, where uncer-
tainties are assumed to belong to a given set. In the bound-
ing context, all parameter vectors belonging to the feasible
parameter set, i.e. parameters consistent with the measure-
ments, the error bounds and the assumed model structure,
are feasible solutions of the identification problem. The in-
terested reader can find further details on this approach in a
number of survey papers (see, e.g., Milanese & Vicino, 1991).
To our best knowledge, no contribution can be found which
address the identification of Wiener models when the mea-
surement error �t is supposed to be bounded. In this paper
we consider the identification of single-input single-output
(SISO) Wiener models, when the nonlinear block can be
modeled by a possible noninvertible polynomial, with finite
and known degree, and when the output measurement errors
are bounded.

2. Problem formulation

Consider the SISO discrete-time Wiener model shown in
Fig. 1, where

xt = B(q−1)

A(q−1)
ut . (1)

A(·) and B(·) are polynomials in the backward shift operator
q−1, (q−1wt = wt−1), A(q−1) = 1 + a1q

−1 + · · · + anaq
−na

and B(q−1)=b0 +b1q
−1 +· · ·+bnbq

−nb. The nonlinear block
transforms xt into the noise-free output wt according to

wt = N(xt , �) =
n∑

k=1

�kx
k
t , t = 1, . . . , N , (2)

where n is the polynomial degree and N is the length of
the input sequence. In line with the work done by a num-
ber of authors, it is assumed that: (i) n is finite and a pri-
ori known; this hypothesis will be exploited in Propositions
1, 2, 5 and 6; (ii) the linear system is asymptotically stable
(see, e.g., Krzyżak, 1993; Lang, 1993; Stoica & Söderström,
1982; Sun, Liu, & Sano, 1999); this is a standard hypothe-
sis in open loop identification; (iii)

∑nb
j=0bj �= 0, that is, the

steady-state gain is not zero (see, e.g., Lang, 1993; Sun et al.,
1999); (iv) an estimate of the process settling-time (see, e.g.,
Kalafatis, Wang, & Cluett, 1997) is available. Both hypothe-
ses (iii) and (iv) will be exploited in the first stage of the
proposed procedure when the estimation of the nonlinearity
N is addressed.

Let yt be the noise-corrupted measurements of wt

yt = wt + �t . (3)

Measurements uncertainty is known to range within given
bounds ��t , i.e.,

| �t | ���t . (4)

Unknown parameter vectors � ∈ Rn and � ∈ Rp are
defined, respectively, as �T = [�1 �2 . . . �n] and �T =
[a1 . . . ana b0 b1 . . . bnb], where na +nb +1=p. It is well
known that the parameterization of the structure of Fig. 1 is
not unique. Here, it is assumed, without loss of generality, that
the steady-state gain of the linear part be one. In this paper
we address the problem of deriving bounds on parameters �
and � consistently with given measurements, error bounds and
the assumed model structure. The proposed solution is a three-
stage procedure similar to the one proposed by the authors in
(Cerone & Regruto, 2003) for the computation of parameter
bounds for Hammerstein systems.

First stage: Exploiting M steady-state input–output data, one
gets the feasible parameter set D� of the nonlinear block pa-
rameters, which is a convex polytope; then the central estimate
�c
j = (�min

j + �max
j )/2 and the parameter uncertainty interval

[�min
j , �max

j ] of each parameter �j are computed solving the fol-
lowing two linear programming problems:

�min
j = min

�∈D�

�j , �max
j = max

�∈D�

�j . (5)

Second stage: Given the estimated uncertain nonlinearity
N(xt , �) and the output measurements collected exciting the
system with an input dynamic signal, bounds on the inner sig-
nal xt are computed.

Third stage: The bounds computed in the second stage, to-
gether with the input dynamic sequence, are used to obtain a
polytopic outer approximation D′

� of the exact feasible parame-

ter set D� of the linear system. The central estimate �c
j =(�min

j +
�max
j )/2 and the parameter uncertainty interval [�min

j , �max
j ] of

each parameter �j are computed solving the following two lin-
ear programming problems:

�min
j = min

�∈D′
�

�j , �max
j = max

�∈D′
�

�j . (6)

The first and the third stages of the procedure are quite stan-
dard and they will not be discussed in the paper. The inter-
ested readers can find the details in the previous works by
the authors (Cerone & Regruto, 2003) and (Cerone, Milanese,
& Regruto, 2003). The rest of the paper will focus on the
novel contribution (the second stage of the procedure), i.e.,
the derivation of bounds on the inner unmeasurable signal
through the partial inversion of the nonlinearity. The proof of
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all the Propositions presented in the paper can be found in
(Cerone & Regruto, 2005).

The paper is organized as follows. In Section 3 we describe
how to design a suitable input sequence to deal with the pres-
ence of a noninvertible polynomial nonlinearity at the output.
The evaluation of the inner signal bounds is discussed in Sec-
tion 4, while in Section 5 the computational aspects of quanti-
ties and sets involved in the estimation of the inner signal are
analyzed. Finally, in Section 6 the proposed parameter bound-
ing procedure is illustrated through a numerical example.

3. Dynamic experiment design

In the first stage of the parameter bounding procedure an
uncertain description of the nonlinear block is obtained exploit-
ing steady-state data. In order to estimate the parameters of the
linear model in the third stage, one should first evaluate the
inner signal xt ∈ R from the output records yt of a dynamic
experiment. Unfortunately, one must consider the fact that
nonlinearity (2) is in general noninvertible, which means that,
given the measured output yt , the inner signal xt cannot be
evaluated uniquely. Nonuniqueness, unfortunately, is responsi-
ble for nonconsistent inner signal estimates. Given the feasible
parameter set D� of the nonlinear block computed in the first
stage of the procedure, the following families of polynomials
can be defined:

Vt = {N(xt , �) : � ∈ D�} (7)

and

�t = {pt (xt , wt , �) : wt ∈ R, � ∈ D�}, (8)

where

pt (xt , wt , �) = wt −
n∑

k=1

�kx
k
t . (9)

It is assumed that all polynomials in Vt and �t have degree
equal to n, that is, �n �= 0 ∀� ∈ D�. In this case, in order to
evaluate the inner signal xt one has to find the real roots of the
uncertain polynomial (8). Now, let us introduce the following
definitions:

Definition 1. The set W ⊂ R is an output invertibility interval
for the uncertain polynomial N(xt , �) of degree n, if for wt ∈
W each polynomial pt (xt , wt , �) ∈ �t shows either only one
real root when n is odd or two real roots when n is even. Each
wt belonging to an Output Invertibility Interval is called an
invertible output value.

Definition 2. The set X ⊂ R is a feasible inner-signal interval
for the Wiener system described by Eqs. (1) and (2) if the set of
output valuesO={wt∈R:wt=N(xt , �), N(xt , �)∈Vt , xt∈X}
is an output invertibility interval.

The key idea exploited in this paper is to design an input
sequence {ut } which forces the unmeasurable inner sequence
{xt } to belong to a prescribed feasible inner-signal interval X.

In such a way the corresponding output sequence {wt } belongs
to an output invertibility interval of the polynomial N(x, �)
and each sample of the inner sequence {xt } can be bounded
as described in Section 4. The rest of this Section will focus
on how to design the input sequence {ut }. The following two
propositions provide a characterization of the output invertibil-
ity intervals and the feasible inner-signal intervals of the Wiener
system described in Section 2.

Proposition 1. The uncertain polynomial N(xt , �) with
� ∈ D�, shows the following two output invertibility intervals:

W=]w, +∞[ and W=] − ∞, w[ f or n odd (10)

W=]w, +∞[ f or n even, �n > 0 (11)

and

W=] − ∞, w[ f or n even, �n < 0, (12)

where

w = max
xt∈Υt

max
�∈D�

n∑
k=1

�kx
k
t , w = min

xt∈Υt

min
�∈D�

n∑
k=1

�kx
k
t , (13)

Υt =
{

xt ∈ R : d

dxt

n∑
k=1

�kx
k
t = 0, f or some � ∈ D�

}
. (14)

Proposition 2. The Wiener system described by Eqs. (1) and
(2), with uncertain output polynomial N(xt , �), shows the fol-
lowing Feasible inner-signal intervals:

X=]x, +∞[, X=] − ∞, x[, (15)

where

x = max

{
xt ∈ R : 1 + sign(�n)

2
w + 1 − sign(�n)

2
w

−
n∑

k=1

�kx
k
t = 0, f or some � ∈ D�

}
, (16)

x = min

{
xt ∈ R : 1 + (−1)nsign(�n)

2
w −

n∑
k=1

�kx
k
t

+1 − (−1)nsign(�n)

2
w = 0, f or some � ∈ D�

}
. (17)

A graphical illustration of Propositions 1 and 2 is depicted
in Fig. 2 for the case of an odd polynomial of degree 3.

3.1. Input sequence design

In order to drive the inner signal {xt } into the desired interval
X, the input signal {ut } should contain a DC component uDC
(offset) and a dynamic exciting signal {utd} whose amplitudes
should be chosen in such a way that xt = xDC + xtd belongs
to X ∀t . Since the steady-state gain of the linear subsystem is
constrained to be one, the amplitudes of the DC components in
ut =uDC +utd and xt are the same, i.e., uDC =xDC. Guidelines
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Fig. 2. Output invertibility intervals (red), feasible inner-signal intervals
(green) and inner signal bounds of an uncertain odd polynomial.

for the design of the dynamic exciting signal {utd} are provided
by the following two propositions.

Proposition 3. For a given uDC �x, each sample of the se-
quence {xt } belongs to X if

‖{utd}‖∞ � |uDC − x|
hup

. (18)

where h is the impulse response of the linear block and hup

is an upper bound of its �1 norm; ‖ · ‖∞ is the �∞ norm of a
sequence.

Proposition 4. For given uDC �x, each sample of the sequence
{xt } belongs to X if

‖{utd}‖∞ � |uDC − x|
hup

. (19)

When no a priori information on the �1-norm of the linear
system is available, the following results can be exploited.

Proposition 5. All the samples of the output sequence {wt }
belong to the same output invertibility interval W (either W =
W or W = W ) if the samples of the corresponding measured
sequence {yt } satisfy the following inequalities, where yt =w+
��t and y

t
= w − ��t :

yt > yt ∀t or yt < y
t
∀t, when n is odd (20)

sign(�n)(yt − sign(�n)��t )

>
1 + sign(�n)

2
yt − 1 − sign(�n)

2
y

t
,

∀t, when n is even. (21)

Proposition 5 provides sufficient conditions for {wt }
to belong either to W or to W . Thus, when no a priori

information on the �1-norm of the linear systems is available,
the condition xt ∈ X∀t can be indirectly satisfied varying the
amplitude of the dynamic sequence {utd} by trial and error until
the measured output sequence {yt } satisfies either condition
(20) or (21).

4. Evaluation of bounds on the inner signal

Given the estimated uncertain polynomial nonlinearity Vt

and a sequence of measured outputs {yt }, obtained exciting
the Wiener system with the input sequence {ut } designed as
described in Section 3, in this section it is shown how upper
and lower bounds on the samples of the unmeasurable inner
signal xt can be evaluated.

The following proposition provides bounds for the case
�n > 0 and X = X. Similar propositions for the other cases
are not reported since they are only slight variations of this
result.

Proposition 6. Given the estimated polynomial nonlinearity
N(xt , �) with � ∈ D� and �n > 0, an input sequence {ut }
which drives the inner unmeasurable signal into a feasible
inner-signal interval X, and the corresponding measured out-
put sequence {yt }, each sample xt of the inner sequence {xt } is
bounded as follows:

xmin
t �xt �xmax

t , (22)

xmax
t = max

{
xt ∈ X : yt + ��t −

n∑
k=1

�kx
k
t = 0,

for some � ∈ D�

}
, (23)

xmin
t = max{x, x̂min

t },

x̂min
t = min

{
xt ∈ R : yt − ��t −

n∑
k=1

�kx
k
t = 0,

for some � ∈ D�

}
. (24)

A graphical illustration of Proposition 6 is shown in Fig. 2
for an uncertain odd polynomial of degree 3.

5. Computational algorithms

In this section the computational aspects of quantities and
sets involved in the estimation of the inner signal are analyzed.

5.1. Computation of Υt

First consider the set defined by Eq. (14), i.e., the set of real
valued xt for which the uncertain polynomial shows stationary
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points. The first derivative of the uncertain polynomial is still
an uncertain polynomial, namely

pt
′
(xt , �) = − d

dxt

n∑
k=1

�kx
k
t = −

n∑
k=1

k�kx
k−1
t (25)

which, clearly, shows nonlinear relations in the unknown xt and
the uncertain �. It is noticed that given an xt ∈ R, it belongs to
the real spectral set of polynomial (25) if and only if there exists
at least one � ∈ D� such that xt is the solution of the equation∑n

k=1k�kx
k−1
t =0. In order to find the real roots of (25), a one-

dimensional gridding on the variable xt is proposed. For each
grid point xt one must check if there exists a solution to a set of
2M linear inequalities (i.e., � ∈ D�) and one linear equality (i.e.,∑n

k=1k�kx
k−1
t =0) in the unknown � ∈ Rn. If a solution � exists,

then xt is a real roots of the uncertain polynomial (25). Such
a test can be performed solving a linear programming problem
(see, e.g., Schrijver, 1986).

5.2. Computation of w and w

Next Eq. (13) which defines two nonlinear programming
problems is considered. We note that when xt is given, prob-
lems (13) simplify to linear programs. Thus, to compute w

and w, for each value of xt ∈ Υt , the solution of two linear
programming problems with n variables and 2M constraints
is required. A one-dimensional gridding procedure is used
in order to carry out the optimization over a finite number
of xt ∈ Υt .

5.3. Computation of x and x

Here Eq. (16) and Eq. (17) are considered. In order to sim-
plify the discussion, odd degree polynomial with �n > 0 only
are considered since similar considerations can be made in all
other cases (�n > 0, �n < 0, n odd, n even). In this case one
gets

x = max{xt : pt (xt , �, w) = 0, for some � ∈ D�}, (26)

x = min{xt : pt (xt , �, w) = 0, for some � ∈ D�}. (27)

As a matter of fact Eqs. (26) and (27) show nonlinear relations
in the unknown xt and the uncertain �. The following notes can
be made in order to develop an algorithm for the computation
of x:

(a) if xt is the solution of problem (26), then the set
�t (xt , �, w) = {� ∈ D� : pt (xt , �, w) = 0} is not empty;

(b) let us consider the nominal pnom
t (xt , �∗, w) obtained, e.g.,

setting �∗=�c; it is noticed that only right side of the maximum
real root of equation pnom

t (xt , �∗, w) = 0 has to be explored in
order to find a suitable approximation of x.

Stringing together notes (a) and (b) the following algorithm
is proposed for the approximate computation of x.

Algorithm 1 (Computation of x).

1. Set � = �0 and �� prescribed tolerance .
2. Compute r = max{xt ∈ R : pnom

t (xt , �c, w) = 0}.
3. Set xm = r .
4. Set xM = xm + �.
5. If ∃�
 ∈ D� : pt (xM, �
, w) = 0 then

xm = xM ;
else

If |xM − xm| < � then
x∗ = xM ;
return x∗;
stop algorithm .

else
� = �/2;

end if
end if.

8. Repeat from 4.

The main properties of Algorithm 1 are highlighted by the
following proposition.

Proposition 7. Algorithm 1 enjoys the following properties:
(1) Algorithm 1 is convergent.
(2) Algorithm 1 provides an upper bound x∗ of x; the abso-

lute errors of such a bound is bounded by �.
(3) The check required by step 5 of Algorithm 1 can be

performed solving a linear programming problem (see, e.g.,
Schrijver, 1986).

Similar results can be obtained for the computation of
x which can be computed with a slight modification of
Algorithm 1 (see Cerone & Regruto, 2005).

5.4. Computation of xmax
t and xmin

t

Finally, the computation of the inner signal bounds is con-
sidered. In this case one must compute

xmax
t = max{xt ∈ X : pt (xt , yt + ��t , �) = 0,

for some � ∈ D�} (28)

xmin
t = max{x, x̂min

t }, (29)

where x̂min
t =min{xt ∈ R : pt (xt , yt−��t , �)=0, for some � ∈

D�}. From (28) can be seen that xmax
t can be computed

using Algorithm 1 simply substituting pt (xM, w, �) with
pt (xM, yt + ��t , �). x̂min

t can be computed using the slight
modification of Algorithm 1 used to compute x simply sub-
stituting pt (xM, w, �) with pt (xM, yt − ��t , �) (Cerone &
Regruto, 2005).

6. A simulated example

The system considered here is characterized by
� = [�1 �2 �3]T = [−5 − 4 1]T and � = [a1 a2 b1 b2]T =
[−1.1 0.28 0.1 0.08]T. The considered nonlinear func-
tion is an odd noninvertible polynomial. From the sim-
ulated transient sequence {wt, �t } and steady-state data
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Table 1
Nonlinear block parameter central estimates (�c

j ) and parameter

uncertainty bounds (��j ) against signal to noise ratio (SNR)

SNR �j True �c
j ��j

(dB) value

58.2 �1 −5.000 −4.999 2.1e−3
�2 −4.000 −4.000 1.8e−4
�3 1.000 1.000 4.8e−5

38.2 �1 −5.000 −5.027 3.6e−2
�2 −4.000 −3.995 8.1e−3
�3 1.000 1.001 1.6e−3

28.6 �1 −5.000 −5.040 8.2e−2
�2 −4.000 −4.003 6.2e−3
�3 1.000 1.000 1.9e−3

18.4 �1 −5.000 −5.101 1.1e−1
�2 −4.000 −4.000 1.0e−2
�3 1.000 1.004 5.1e−3

{w̄s, �̄s}, the signal to noise ratios (SNR) are evaluated, re-
spectively, through SNR = 10 log{∑N

t=1w
2
t /

∑N
t=1�

2
t } and

SNR = 10 log{∑M
s=1w̄

2
s /

∑M
s=1�̄

2
s }.

Bounded absolute output errors have been considered when
simulating the collection of both steady state data, {ūs , ȳs},
and transient sequence {ut , yt }. Here we assumed | �t | ���t

and | �̄s | ���̄s where �t and �̄s , are random sequences
belonging to the uniform distributions U [−��t , +��t ] and
U [−��̄s , +��̄s], respectively. Bounds on steady-state and tran-
sient output measurement errors were supposed to have the
same value, i.e., ��t =��̄s���, and were chosen in such a way
as to simulate four different values of SNR at the output, namely
60, 40, 30 and 20 dB. For a given ��, the length of steady-
state and the transient data are M = 10 and N = [100, 1000],
respectively. The steady-state input sequence {ūs} belongs to
the interval [−2, +2], while the transient input sequence {ut }
belongs to the uniform distribution U [−2, +2]. Results about
the nonlinear and the linear block are reported in Table 1 and
Tables 2 and 3, respectively. For low noise level (SNR=60 dB)

and for all N, the central estimates of both the nonlinear static
block and the linear model are consistent with the true parame-
ters. For higher noise level (SNR�40 dB), both �c and �c give
satisfactory estimates of the true parameters. As the number
of observations increases (from N = 100 to 1000), parameter
uncertainty bounds ��j and ��j decreases, as expected.

7. Concluding remarks

In this paper the identification of SISO Wiener models has
been considered when the nonlinear block can be modeled
by a polynomial, with finite and known degree, and when the
output measurements are corrupted by unknown but bounded
noise. The proposed solution is a three stage procedure similar
to the one proposed by the authors in a previous work for the
computation of parameter bounds for Hammerstein systems.
Firstly, using steady-state input–output data, parameters of the

Table 2
Linear system parameter central estimates (�c

j ) and parameter

uncertainty bounds (��j ) against signal to noise ratio (SNR)
when N = 100

SNR �j True �c
j ��j

(dB) value

58.2 �1 −1.100 −1.100 5.3e−3
�2 0.280 0.280 5.1e−3
�3 0.100 0.100 6.1e−4
�4 0.080 0.080 5.6e−4

38.0 �1 −1.100 −1.106 7.9e−2
�2 0.280 0.288 7.4e−2
�3 0.100 0.100 8.0e−3
�4 0.080 0.081 9.0e−3

28.3 �1 −1.100 −1.155 2.1e−1
�2 0.280 0.331 2.0e−1
�3 0.100 0.105 2.0e−2
�4 0.080 0.074 2.9e−2

18.2 �1 −1.100 −1.211 3.9e−1
�2 0.280 0.403 3.6e−1
�3 0.100 0.099 4.2e−2
�4 0.080 0.101 4.7e−2

Table 3
Linear system parameter central estimates (�c

j ) and parameter

uncertainty bounds (��j ) against signal to noise ratio (SNR)
when N = 1000

SNR �j True �c
j ��j

(dB) value

58.2 �1 −1.100 −1.100 1.9e−3
�2 0.280 0.280 1.8e−3
�3 0.100 0.100 1.9e−4
�4 0.080 0.080 2.2e−4

38.4 �1 −1.100 −1.102 5.8e−2
�2 0.280 0.282 5.4e−2
�3 0.100 0.100 6.1e−3
�4 0.080 0.079 5.9e−3

28.2 �1 −1.100 −1.106 8.9e−2
�2 0.280 0.284 8.2e−2
�3 0.100 0.099 8.7e−3
�4 0.080 0.080 1.0e−2

18.2 �1 −1.100 −1.113 1.5e−1
�2 0.280 0.293 1.4e−1
�3 0.100 0.101 1.6e−2
�4 0.080 0.078 1.7e−2

nonlinear block are tightly bounded. Secondly, given the esti-
mated uncertain nonlinearity and the output measurements col-
lected exciting the system with an input dynamic signal, bounds
on the unmeasurable inner signal are computed. Thirdly, such
bounds, together with the input dynamic sequence, are used to
obtain a polytopic outer approximation of the exact feasible pa-
rameter set of the linear system. The main contribution of the
paper is the second stage of the procedure, i.e., the derivation
of bounds on the inner unmeasurable signal through the partial
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inversion of the polynomial nonlinearity. Current limitations of
the approach, and possible directions for further research, are
as follows.

• The proposed procedure is based on the partial inversion
of the nonlinearity performed through the characterization
of a suitable invertibility region for the polynomial. Thus,
the applicability of such a procedure is limited to Wiener
systems with noninvertible polynomial nonlinearities which
have at least one Output Invertibility Interval in their normal
operating range.

• The trial and error method proposed in Proposition 5, which
has to be used when not even an rough upper bound on the
�1 norm of the linear block is known, could be, in general,
time consuming.

• Even though the proposed approach is computationally
tractable, the complexity is high. That is mainly due to the
use of linear gridding which can also affect the accuracy of
the results. Thus, some care must be taken in the algorithms
implementation.
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